
Birdsong Generation with Generative Adversarial Networks
Jack Ruder

jack@ruder.town

University of Puget Sound

Tacoma, Washington, USA

Lucas Gover

lucasgover@gmail.com

University of Puget Sound

Tacoma, Washington, USA

Bennett Baynham

bebaynham@gmail.com

University of Puget Sound

Tacoma, Washington, USA

ABSTRACT
This paper explores the use of generative-adversarial neural net-

works (GANs) to generate artificial birdsong. We analyze two types

of GAN architecture, recurrent neural networks (RNNs) and trans-

formers, for their ability to model sequential data in order to gen-

erate convincing bird vocalizations. Our GAN model is trained

on birdsong scalagrams which leverage the Continuous Wavelet

Transform for more precise time and frequency measures. Through

experiments, we evaluate the efficacy of both architectures and in-

vestigate how GANs can help create realistic birdsong that captures

many of the features of real birdsong.

KEYWORDS
gan, neural networks, generative neural network, transformer, wavelet,

inverse continuous wavelet transform, audio generation, birdsong

1 INTRODUCTION
Birdsong is an incredible tool for researchers all over the globe to

investigate the mysteries of language, vocalization, and auditory

processing. Birdsong demonstrates complex and dynamic patterns

and a robust ability for vocal learning, which is critical for the

evolution of speech [1]. Research on birdsong has enabled us to gain

a better understanding of avian vocal behavior and the evolution of

language. Birdsong can provide researchers with valuable insight

into the subtle intricacies of how we communicate with each other.

This paper explores the use of generative-adversarial neural

network models for generating realistic artificial birdsong. Recent

advances in artificial intelligence and deep learning technology

have made it possible to develop systems that emulate and even

surpass what can be achieved by existing approaches for bird gener-

ation. We discuss the use of such novel neural network techniques

for generating birdsongs . Additionally, we train our model on

birdsongs transformed using the morlet wavelet, allowing us to

cut against the Heisenberg uncertainty principle. This data is then

transformed back into waves after generation. We present a se-

ries of experiments highlighting the effectiveness of the proposed

neural network methods, demonstrating the potential of artificial

intelligence-based approaches for creating viable and naturalistic

birdsong recordings.

Birdsongs have been found to contain a highly structured syntax,

despite emerging from the complex interactions between the bird’s

nervous system and the syrinx — a highly non-linear vocal organ

[1]. The syrinx is the sound-producing organ located between the

lungs and the vocal tract of a songbird. It consists of vibrating

membranes called labia which oscillate when the air from the lungs

exerts a force on them. The syrinx produces sound waves, which

are then filtered through the vocal tract to produce its song [12].

The syrinx can produce two notes at once due to its two bronchial

tubes, with each controlled independently [25].

Birdsong is produced for other birds to hear. Most bird species

have the greatest sensitivity to sounds around 1 - 4 kHz, though

their full range is comparable to the human hearing range [2]. This

isn’t true for all birds; for example, pigeons can hear infra-sound,

with the typical pigeon being able to hear 0.5 kHz, allowing them to

detect distant storms and even volcanoes [2]. Birds use birdsong to

defend their territory, identify an individual bird, and attract mates.

Each species of bird has its own distinctive set of short calls and

songs that make up its repertoire. Calls tend to be shorter and used

to communicate a threat to a nearby bird [25].

To generate birdsong, we use a Generative Adversarial Network

(GAN). A GAN is a powerful machine learning model based on a

generative model and a discriminator network trained against each

other. The generative model creates samples given a noise vector,

while the discriminator network evaluates these samples and tries to

guess whether they are real or generated [8]. Themodels are trained

iteratively, where the generative model tries to produce samples

that are as realistic as possible, and the discriminator attempts to

identify which are real and which are generated. For GANs, both

the discriminator and generator use neural networks to learn to

optimize their task.

Audio data is recorded as a series of amplitude values over time.

This type of data could be difficult for a Generator to learn to repli-

cate, so most researchers tend to use some transformation on the

data to make it into a more comprehensible format. The windowed

Fourier Transform is most commonly used in the literature. How-

ever, the windowed Fourier Transform cannot concurrently give

good information about both frequency and time. To offer more

accurate results, we use a Continuous Wavelet Transform. By ex-

pressing data as a series of wavelets modulated by a scaling factor

and shifted in time, the Continuous Wavelet Transform enables

more precise time & frequency measures.

Because bird vocalizations have variable lengths, and the fre-

quency a bird produces depends on the sequential placement of the

current timestep among other timesteps, we generate bird vocaliza-

tions with the types of neural networks that can model sequential

data: Recurrent Neural Networks and Transformers. Recurrent Neu-

ral Networks (RNNs) are neural networks designed to process se-

quential data using a combination of feedback loops and traditional

neural networks [11]. The network (and its weights) are repeated

for each timestep, allowing the network to “remember” what hap-

pened previously in the sequence. In our case, this “memory” is

used to model birdsong – by having multiple timesteps, the model

can improve its understanding of a bird’s vocalization and produce

an accurate sample.

The transformer architecture was introduced by Vaswani et al.

2017 [28] an improvement to recurrent architectures by making

use of a mechanism called attention. Attention attempts to model

the relationship between words in a sentence by keeping track of

Jack Ruder, Lucas Gover, and Bennett Baynham

every combination of token relationships. This allows a transformer

network to “focus” on certain parts of the sequence at certain times.

As a result, transformers should have the capacity to generate

birdsong more accurately than a standard RNN, as they can learn

which parts of the sequence are most important through a more

precise representation.

We experiment with creating two different GAN models: one us-

ing RNNs the other using Transformers. As the models are trained

iteratively, they learn more about birdsong, making the samples

increasingly sophisticated. This GAN approach is particularly pow-

erful for producing birdsong, as it allows the models to create real-

istic samples while also providing a high degree of variability. By

using this approach, we attempt to generate convincing birdsong

that captures many of the features that characterize real birdsong.

2 BACKGROUND
2.1 CWT in Audio Analysis
Within audio analysis, the Continuous Wavelet Transform is in-

creasingly being used because it more accurately describe the fre-

quency at each timestep than the windowed Fourier transform. The

Continuous Wavelet Transform is used by Kim et al. 2020 [15] to

convert EEG signals into time-frequency images, which can be used

as an input to a convolutional neural network (CNN). The CWT

takes advantage of the signal’s magnitude and phase information

to extract features that are important to EEG signal classification.

The signal’s real part and imaginary part are extracted separately

and then combined to create an image input that encodes both mag-

nitude and phase information. This allows the neural network to

consider both properties when classifying EEG signals. The use of

this technique results in more accurate classification performance,

increasing the reliability of the system. Smith and Kristensen 2017

[23] used a Convolutional Neural Network to analyze mouse vocal-

izations. To achieve this, they employed the Continuous Wavelet

Transform to generate a higher-quality spectrogram than the con-

ventional STFT approach, providing them with a way to capture

the frequency components of the calls and create informative spec-

trograms.

2.2 Convolutional-Recurrent-Neural-Networks
The use of Convolutional Networks together with Long-Short Term

Memory (LSTM) layers has become increasingly popular in the task

of time series classification due to its advantages in accuracy, mini-

mal pre-processing requirements, scalability with a larger amount

of data, and its ability to calculate features on its own. A 2019 study

by Karim et al. [13] used a Convolutional-RNN with LSTM layers

and achieved a dramatic increase in accuracy over traditional clas-

sification methods and made time series analysis more accessible.

The paper’s authors build upon the conventional LSTM model used

for time series classification by adding a convolutional neural net-

work (CNN) to the LSTM stack. The CNN layer allows the system

to look for certain features within a given dataset and use those

features to refine its predictions further. CNNs are usually aimed

at image processing, but the authors demonstrate that CNNs are

effective for time-series data as well.

Gupta et al. 2021 [9] combined Convolutional Neural Network

(CNN) with a recurrent neural network (RNN) to develop a hy-

brid architecture that they used to classify birds more accurately.

To implement the hybrid architecture, Gupta et al. [9] first split

each audio recording into small equal-length chunks, extracted mel

spectrograms (visual representation of sound frequencies) from

each chunk, and fed the mel spectrograms as inputs to the CNN

model. The CNN model then extracted lexical features from the

mel spectrums, i.e., it recognized certain aspects of sound that are

recognizable as belonging to a particular bird species. These lexical

features were then fed as inputs to the RNN model, which pro-

cessed them further to recognize longer time-sensitive patterns,

such as the presence of multiple calls. The combined architecture

then classified the bird recordings accordingly, leading to higher

accuracy than that achieved by previous models.

2.3 GANs in Audio Generation
Audio generation and analysis is a growing field of study within

artificial intelligence research. Much of the research has been into

the study of Text-To-Speech models, where there has been dramatic

progress in recent years. The study of artificial music Generation

has also grown in popularity in recent years. Many works focus on

Defining Input Representation and a set of generative models that

can produce “realistic” music from a given input spectrogram. In

their 2019 study, Engel et al. [6] introduce an audio synthesis tech-

nique that uses Generative Adversarial Networks (GANs) to gen-

erate waveforms from spectrograms. Their end result was higher

quality, more globally consistent, and more locally coherent sound

than previously attainable with WaveNet, the current standard of

audio waveform synthesis. They achieved this result by including

a second channel in their input spectrograms; a phase-derivative

channel. Not only were Engel et al.’s GANs able to outperform

existing WaveNet baselines in automated and human evaluation

metrics, but they were also able to synthesize audio several orders

of magnitude faster than their autoregressive counterparts. This

suggests that using GANs and frequency-phase spectrograms for

audio generation is effective. These results suggest not only a revo-

lutionary new way of creating high-fidelity audio but also a more

efficient and ultimately better way to do it [6]. Some of the most

successful models in this space use deep learning methods such as

Generative Adversarial Networks and Recurrent Neural Networks.

Mogren 2016 [19] uses a Convolutional-Recurrent-Neural-Network

GAN to generate variable-length MIDI files. This model generates

notes sequentially, with each note informed by the notes that were

generated in previous time steps. Mogren [19] found that the C-

RNN-GAN model can generate high-quality music samples.

There is only limited bio-acoustic research into generation, pos-

sibly because there’s no clearly defined metric to determine the

quality of the generated sounds [24]. Bhatia 2021 [3] tests vari-

ous techniques of audio generation to generate birdsong. The first

approach uses the Wavenet vocoder. The Wavenet vocoder is a tech-
nique used to generate birdsong audio, which involves training a

feature prediction network for frame-level ground truth-aligned

predictions and training wavenet with a teacher-forcing method

to predict conditioned frame-level sample waveforms. The second

approach uses a wavenet autoencoder model to generate birdsong

Birdsong-GAN

audio. This model learns temporal encodings of audio data, remov-

ing the need for external features. It then uses a vanilla WaveNet

decoder to upsample the encoded data and generate birdsong. Bha-

tia’s final approach, Parallel Wavegan, uses a generative adversarial
network to generate realistic birdsong audio by jointly optimizing a

multi-resolution spectrogram and an adversarial loss function. All

these approaches generate only a fixed-length birdsong.We extend

this literature in 2 significant ways. First, we use sequential network

architecture, which are able to better represent the fact that sound

produced at each time-step is informed by the previous time-steps.

And second we use the Continuous Wavelet Transform to get more

accurate frequency readings at each timestep.

3 PREPROCESSING
3.1 Scalogram Generation
3.1.1 Spectrograms. Audio classification and generation tasks typ-

ically rely on spectrograms, usually produced from the windowed

Fourier transform. Spectrograms are a time-frequency representa-

tion of a waveform that show the strength of a signal over time for

a range of frequencies. In generative tasks, Mel-scaled (logarith-

mic, targeting frequencies for human hearing) spectrograms are

especially popular since popular text-to-speech models are devel-

oped with the goal of outputting a Mel-spectrogram. The windowed

Fourier transform works by iteratively computing the Fourier trans-

form over a small portion of a waveform. For each window, a rep-

resentation of the underlying frequencies is obtained; when the

representation for each window is viewed in sequential order we

obtain a spectrogram. The primary disadvantage of the windowed

Fourier transform is that the window has a constant width. Higher

frequencies have shorter periods, and a large window will fail to

accurately identify when these frequencies are present. Likewise,

low frequencies have long periods and therefore do not need a small

window to capture their temporal locality. This is known as the

Heisenberg uncertainty principle, which tells us that in analyzing

a signal we must choose between frequency resolution and time

resolution. As a result, any window width chosen for a windowed

Fourier transform will be a compromise, especially when we need

to capture the high frequencies present in birdsong.

3.1.2 Continuous Wavelet Transform. The Continuous Wavelet

Transform (CWT) provides a solution to this conundrum by simul-

taneously providing frequency and time information. The CWT is

based on wavelets, which are oscillating signals typically having

zero mean and time-frequency localization. To capture a certain

frequency, a mother wavelet is stretched in time. Then the wavelet

is shifted over the entirety of the signal, and at each time step a

correlation is computed by means of convolution. For a discrete

time signal 𝑥 , the CWT is computed as:

𝑤 (𝑎, 𝑏) =
𝑁−1∑︁
𝑡=0

𝑥𝑡𝜓
∗
[
(𝑡 − 𝑏)

𝑎

]
, (1)

where 𝜓 is a wavelet function (known as the mother wavelet), 𝑎

is a frequency-associated scaling factor, and 𝑏 is a time-shift [26].

We refer to𝜓

[
(𝑡−𝑏)
𝑎

]
as a daughter wavelet since it is just a scaled

and shifted version of the original wavelet function. In practice,

the above formula is inefficient, we can reduce the complexity by

performing the transform in fourier space. In fourier space, we

have:

𝑤 (𝑎, 𝑏) =
𝑁−1∑︁
𝑡=0

𝑥𝑡 ˆ𝜓
∗ (𝑎𝜔𝑡) 𝑒𝑖𝜔𝑡𝑏 , (2)

which is quickly computed with an inverse fourier transform [26]:

𝑤 (𝑎, 𝑏) = IFFT(𝑥𝑡 ˆ𝜓∗ (𝑎𝜔𝑡)) . (3)

𝜔𝑡 is known as an angular freqency, computed by

𝜔𝑡 =

{
2𝜋𝑡 ·hz
𝑁

𝑡 ≤ 𝑁
2

− 2𝜋𝑡 ·hz
𝑁

𝑡 ≥ 𝑁
2
.

(4)

When we compute the wavelet transform for a range of scales

over an entire signal, we obtain a scalogram, like in figure 1. A

scalogram is visually very similar to a spectrogram, but it cheats

the Heisenberg uncertainty principle by providing the right amount

of time localization for all frequencies present. Since we are working

Figure 1: A CWT-generated Scalogram depicting 3 seconds of
birdsong. Y axis is representative of increasing frequencies.
X axis is time. Warmer colors indicate presence of a signal.

in the domain of animal sounds we follow Smith and Kristensen

[23] and use the complex morlet wavelet, which is defined in fourier

space as

ˆ𝜓 (𝑎𝜔) =
{
𝜋−1/4

exp

(
−(𝑎𝜔−2𝜋)2

2

)
if 𝜔 > 0,

0 otherwise

(5)

Usage of a complex wavelet improves the recovery of informa-

tion when the phase of a signal’s frequency does not align with the

wavelet’s phase. The output of a CWT with the complex morlet

wavelet has the primary advantage of providing an imaginary chan-

nel in a scalogram. For the purposes of audio generation, obtaining

phase in a generated scalogram will allow a more realistic recon-

struction with fewer artifacts. We feed a tight range of scales for

our wavelets, representing 64 different frequencies logarithmically

spaced.

Jack Ruder, Lucas Gover, and Bennett Baynham

3.1.3 Inverse CWT with a Morlet Wavelet. A lack of use of the

complex morlet wavelet in vocoders or other audio processing

techniques can be attributed to the difficulty of inverting the CWT.

While there is a well-known inverse for the CWT, the inversion

requires any wavelet used to satisfy the admissibility condition.

The morlet wavelet does not satisfy this condition, and as a result

is avoided in scenarios where inversion is needed. Postnikov et al.

[20] proposes an analytical reconstruction method for the classic

complex morlet wavelet. We use a slightly modified version of

the morlet wavelet, but our inversion formula only differs by a

multiplication of 𝜋 . Our (slightly) modified inversion is

𝑓 (𝑡) = 𝜋
√
2𝜋

Im

[∫ ∞

0

𝜕𝑤 (𝑎, 𝑏)
𝜕𝑏

𝑑𝑎

]
, (6)

where𝑤 (𝑎, 𝑏) are coefficients from the wavelet transform with the

complex morlet wavelet as previously described. Ideally, we would

normalize our wavelets in a transform to be able to produce scalo-

grams that are normalized across different scales. Unfortunately

this reconstruction does not work when wavelets are normalized to

have unit energy, so for current experiments we leave our wavelets

un-normalized.

Practically, this inversion does very well, see figure 2. We no-

tice no loss in perceptual audio quality after feeding a waveform

through our CWT and then inverting it. This allows us to recover

audio from our generated scalograms, a crucial step in our process.

The downside of trying to generate these scalograms is their size.

Figure 2: Here we have a bird chirp which passed through
our CWT, and then was fed through the inverse. Though the
peaks here are not perfect, they are almost exact. The opera-
tions producing this reconstruction used 64-bit precision.

For any given signal, only frequencies that are less than half the

sample rate of the original signal can be detected. The highest fre-

quency possible to detect is known as the Nyquist frequency. With

our inverse transform, we experimentally observed that amplitude

recovery is poor when there are frequencies present that surpass

1/3 of the sample rate. As birds produce and hear 8k+ frequencies,

we cannot easily dip below a standard 22kHz sampling rate. This

makes the generation of scalograms very expensive and difficult,

likely a reason we do not see this task attempted often in literature.

3.2 Augmentation
Finding clean training data for neural networks can be difficult.

Even when data is obtained, a small number of samples can easily

be memorized by large networks such as ours. To reduce overfitting

and increase the diversity of the Generator’s output we apply a

random set of augmentations to each of our waveforms before

they are passed through a CWT. The waveforms used should not

fundamentally change the audio; we employ frequency-preserving

time stretching, pitch shifting, noise reduction. The effects of these

transforms should produce affine effects on our scalogram images.

Many classification tasks add input noise, we avoid this in favor of

providing our generator clean samples (though noise is employed

in the training process).

3.3 Polar Transformation
After audio samples are passed through augmentation and a CWT

transform, the resulting scalograms are in cartesian complex form.

These are converted into magnitude and phase, which are more

representative of the underlying signal. In fact, single channel spec-

trograms/scalograms are interpreted by viewing the coefficients as

amplitude. For each complex𝑤 (𝑎, 𝑏) in our scalogram,

𝐴 = | |𝑤 (𝑎, 𝑏) | |, (7)

𝜃 = atan2(𝑤 (𝑎, 𝑏)), (8)

where atan2 is the 4-quadrant arctangent. It is crucial to note that

the domain of 𝑎𝑡𝑎𝑛2 is [−𝜋, 𝜋]. The phase of a signal is not re-

strained in any way: this means that phase discontinuities (2𝜋

jumps) are present in our resulting signal as an artifact of 𝑎𝑡𝑎𝑛2.

We rely on simple phase unwrapping from [27], applying the un-

wrapping process across each frequency band indiviudally.

Engel et al. 2019 [6]suggests for their classification techniques

to use the derivative of phase, instantaneous angular frequency.

Unwrappped phase is difficult to normalize since it is unbounded

and periodic–this makes the generator’s task difficult. Using instan-

taneous angular frequencies as a non-periodic value will hopefully

help the generator predict a realistic combination of amplitude and

phase.

3.4 Normalization
We choose a global normalization scheme for our neural network

inputs. Based on the global mean and variance of scalograms gen-

erated by our data, for each scalogram we normalize amplitude and

instantaneous angular frequencies separately to a range of -1 to 1,

matching the range of a Tanh activation function.

4 TIME-TRANSFORMER GAN
Our proposed architecture makes use of transformers by feeding

time series vectors of frequencies in temporal-order to a transformer

to capture long-range context of audio signals. This is similar to

work done with the Audio Spectrogram Transformer (AST), which

feeds flattened square patches of a spectrogram as transformer

input [7]. In Gong et al. 2021 [7], the use of patches is meant to help

capture spatial structure of the spectrogram as a whole, but they

observed that feeding rectangular, temporal-sequenced patches

leads to higher performance in classification. A popular architecture

for images, the Vision Transformer described in Lee et al. 2021 [16],

Birdsong-GAN

has a very similar structure and achieves state-of-the-art results

compared to traditional CNN architectures.

Within GANs, the use of transformers has been somewhat lim-

ited: We know of no architectures that use transformers for audio

generation. In image generation there are many techniques that

have emerged in the past few years, our approach is most similar to

ViTGAN, which uses a ViT in both the generatior and the discrimi-

nator. ViTGAN proposes several improvements to the transformer

architecture that we will make use of in our model. Notably, to

improve lipschitz continuity in the discriminator, ViTGAN intro-

duces L2 normalized attention for the transformer-encoder, and an

improved spectral normalization scheme [16, 18].

An additional modification to the transformer is needed to gen-

erate audio. The traditional layer normalization used in transformer

architectures normalizes inputs across multiple channels. With im-

ages, this is not an issue because the separate channels each are

representative of a different color; they have similar underlying

distributions. In this case there is one channel for amplitude and

another for instantaneous angular frequency, normalizing both

together is problematic since they are distributed differently. To

solve this issue, a flattened patch needs to be reshaped to recover

channel as a dimension. Then, layer normalization is applied across

each channel individually before being re-flattened. We will call

this Channeled Layer Normalization (CLN). Following Lee et al.

2021 [16], we additionally make use of self-modulation as described

in Chen et al. 2019 [5] to improve the generator’s function and to

control labels in both the generator and discriminator. This results

in the transformer-encoder architecture seen in figure 3.

For this architecture, we expect an input/output scalogram of size

R𝐵×2×𝑊 ×𝐻
, where 𝐵 is batch size,𝑊 = 𝑇 ·ℎ𝑧 is the number of time

samples, and 𝐻 is the number of frequencies. Again, one channel

contains CWT amplitudes, the other contains instantaneous angular

frequencies. Due to the high sample rate of audio, it is impractical

to use a sequence length of𝑊 within a transformer architecture,

since the memory required is 𝑂 (𝑊 2). In the discriminator, this

means we downsample our scalograms before feeding them to a

transformer-encoder. In the generator, we perform latent operations

to produce a downsampled scalogram before upsampling to the

final size. Likely this is not a big issue; the number of features

in time of an audio signal should not be as high as the sample

rate required for bird audio. By downsampling the time dimension

in the discriminator by a factor of 128, a sample rate of 22050 is

representative of 172 sets of frequencies per second. In the AST

architecture, spectrograms contained 100 samples per second so we

should be confident that we have enough information to distinguish

images as real or fake. To give the generator more strength and

avoid computationally expensive upsampling, we limit the time

downsampling of the generator to a factor of 32.

4.1 Generator
First, our generator samples a noise vector z ∈ N (0, 𝐼1024) ∈ R1024.
We take z, feed it through a fully connected layer, then reshape

to obtain w ∈ R𝐻×𝑊 ×𝐻 ·𝐶
. Similar to Lee et al. 2021 [16], we

replace the layer normalization layers of the traditional transformer-

encoder with self-modulating CLN, and use w to control the self-

modulation.

Figure 3: Transformer architecture using self-modulation as
suggested by [16]

We expect our transformer-encoder to output tokens in tempo-

ral order, so we use the original positional encoding presented in

Vaswani et al. 2017 [28] as the transformer’s input. Next, to ex-

tract the information encoded by the transformer layers we feed

the transformer’s encoded output through a MLP, and next a sin

activation function [16, 22]. The result at this stage is esentially

a downsampled scalogram. The scalogram is upsamlped to the fi-

nal size using stride 2 deconvolutions, passed through a stride 1

convolution layer, and finally output through a Tanh activation.

4.2 Discriminator
The discriminator used closely follows the AST architecture. An

input scalogram of size R𝐵×2×𝑊 ×𝐻
is passed through a series of

stride 2 convolutions to a size of R𝐵×2×𝑊
′×𝐻

, where𝑊 ′ =
⌊
𝑊
128

⌋
is the downsampled time dimension. The resulting tensor gets re-

shaped toR𝐵×𝑊
′×2𝐻

. We add positional encoding and concatentate

a learnable class token to the sequence of frequency vectors before

feeding to a transformer-encoder. To incorporate labels, we again

replace the layer normalization with self-modulating CLN, and use

the label vector to control self-modulation. Just as in AST, we use a

MLP layer on the class token for a final classification, outputting

a prediction via a Tanh activation. We apply the improved spec-

tral normalization in all applicable layers, and use L2-normalized

attention to constrain the lipschitz constant of the discriminator.

Jack Ruder, Lucas Gover, and Bennett Baynham

4.3 Training
Our network as described does not train easily; this is where there

is still much progress to be made. The following training tricks

have made significant contributions to improving traning stability.

4.3.1 Equalized Learning Rate. As with all GANs, training is an

arduous process where convergence is not guaranteed. A big issue

is that the job of the transformer layers is much more difficult that

the upsample/downsample layers. This means that for any given

learning rate, the rate might be too high for one part of the ar-

chitecture while too low for another. To mitigate this impact we

make use of an equalized learning rate, presented in Karras et al.

2018 [14]. The equalized learning rate rescales weights at runtime

by dividing the weights by the constant from He’s Initializer [10].

With this adjustment, weights can be initialized from a N(0, 1) dis-
tribution, and we can ensure that each layer trains at the same rate.

We found that weight normalization has been crucial to improving

training stability, and the equalized learning rate is an effective

improvement over dividing the weights by their standard deviation

at runtime.

4.3.2 Cost Function. For our cost function, we choose to use Rela-

tivistic Averaging Least Squares GAN. In Zhang et al. 2020 [29]rel-

ativistic GAN is proposed as a cost function that meaningfully

improves training stability over other alternative cost functions,

for a wide variety of normalization techniques and a wide variety

of tasks. Relativistic GAN edits the discriminator loss to measure

whether a given real image is "more real" than a given fake image.

The generator aims to produce fake images that are more real than

a given real image. If 𝑓 is a non-saturating loss function, then for

discriminator classification𝐶 , real samples P and generated samples

Q, the relativistic GAN formulation is

L𝑅𝐺𝐴𝑁
𝐷 = E(𝑥𝑟 ,𝑥𝑓)∼(P,Q)

[
𝑓 (𝐶 (𝑥𝑟) −𝐶 (𝑥 𝑓))

]
, (9)

L𝑅𝐺𝐴𝑁
𝐺 = E(𝑥𝑟 ,𝑥𝑓)∼(P,Q)

[
𝑓 (𝐶 (𝑥 𝑓) −𝐶 (𝑥𝑟))

]
. (10)

(11)

With a smaller batch size, it is not too expensive to use Relativis-

tic Averaging GAN [29]. Relativistic Averaging GAN makes the

modification that the discriminator should estimate the probability

that a real image is more real than the average realness of a batch’s

fake images. This is most clearly stated mathematically: With a

least squares cost function, our loss becomes

L𝑅𝑎𝐿𝑆𝐺𝐴𝑁
𝐷 = E𝑥𝑟∼P

[(
𝐶 (𝑥𝑟) − E𝑥𝑓 ∼Q𝐶 (𝑥 𝑓) − 1

)
2

]
(12)

+ E𝑥𝑓 ∼Q

[(
𝐶 (𝑥 𝑓) − E𝑥𝑟∼P𝐶 (𝑥𝑟) + 1

)
2

]
, (13)

L𝑅𝑎𝐿𝑆𝐺𝐴𝑁
𝐺 = E𝑥𝑓 ∼Q

[(
𝐶 (𝑥 𝑓) − E𝑥𝑟∼P𝐶 (𝑥𝑟) − 1

)
2

]
(14)

+ E𝑥𝑟∼P
[(
𝐶 (𝑥𝑟) − E𝑥𝑓 ∼Q𝐶 (𝑥 𝑓) + 1

)
2

]
. (15)

(16)

Note that the complexity of this loss function is 𝑂 (𝐵) since each
image in a batch is required to pass through the discriminator. With

a batch size of 𝐵 = 1, the above cost functions reduce to RLSGAN.

In testing different hyperparameters for our model we favor the use

of non-averaging relativistic GAN with a higher batch size to avoid

the computational penalty of RaLSGAN. RaLSGAN shows notably

higher training stability with our model, but we avoid have avoided

it thus far, since we are still evolving our architecture and training

routine. Once we see better results from this architecture we can

consider swapping in RaLSGAN for increased overall quality of

generation.

The choice of a least squares cost function helps to avoid the

issue of vanishing gradients and increase stability [17]. Though

Karras et al. 2018 [14] suggests that LSGAN is less stable than

Wasserstein GAN with a gradient penalty, Lee et al. 2021 [16] states

that introducing a gradient penalty halts their training with the

transformer architecture. We find similar results here, with imme-

diate mode collapse of the generator when introducing a gradient

penalty.

To help LSGAN, we draw another trick from Karras et al. 2018

[14] that penalizes the discriminator when it’s output approaches 1.

We can addmultiplicative noise to each input layer of the discrimina-

tor, where the magnitude of the noise is determined as an exponen-

tial moving average of the discriminator’s output. This technique

functions similarly to label smoothing (for example, changing the

discriminator’s target to 0.9), but is a muchmore adaptive technique.

At the moment we use both label smoothing and multiplicative

noise, though it is unclear if mixing these techniques is detrimental.

The moving average here is the same as described in Karras et al.

2018 [14],

𝜎noise = 0.2 ·max(0, ˆ𝑑𝑡 − 0.5)2, where ˆ𝑑𝑡 = 0.1𝐶 (𝑥prev) + 0.9 ˆ𝑑𝑡−1 .
(17)

4.3.3 Consistency Regularization. Again taking inspiration from

Lee et al. we choose to implement Consistency Regularization [29].

Consistency Regularization relies on the use of an augmentation

transform to introduce an additional loss term. The loss term is

computed as

L𝑐𝑟 = | |𝐶 (𝑥) −𝐶 (𝑇 (𝑥)) | |2, (18)

where𝑇 (𝑥) is an augmentation transform. In this case we compute

an augmented scalogram by first applying additional augmentations

(pitch shift and time shift) to the original waveform. Next, the

resulting waveform is fed through the same processing steps to

produce a scalogram as described in section 3.2. This loss term is

added to the discriminator’s loss, so that L𝑐𝑟
𝐷

= L𝐷 +𝜆L𝑐𝑟 . In early

stages of training, our consistency regularization is extremely high

due to how difficult our GAN’s task is. Instead of the conventional

constant of 𝜆 = 10, we instead choose to start at 𝜆 = 1 and linearly

grow 𝜆 to 10. Scheduling 𝜆 in this way reduces the severity of the

penalty in the initial training epochs, but ramps up the penalty as

the discriminator begins to understand its task.

4.4 Results
This architecture is still a work in progress. Training is gener-

ally slow, with the a model producing 1 second of song requiring

roughly 15 minutes per epoch using RaLSGAN and a batch size of

8 on an RTX 4090. A good metric for birdsong scalograms should

be developed to quantitatively evaluate any results, but we rely on

visual scalogram patterns and perceptual audio quality. No audio

Birdsong-GAN

Figure 4: Loss from ourmost recent training run, stopped at 9
epochs. Similar loss values indicate discriminator underper-
formance. Notice however, that the networks still converge
towards an equilibrium.

samples have been produced that sound like birdsong, though a

few scalograms during training started to show convincing results

until training collapsed. Examples of common collapse in our gen-

erator can be seen in Appendix A. Figure 4 shows that our training

techniques are able to produce converging networks, this is a big

improvement over our initial iterations. With moderately recent

changes and developments in the model, it is possible that a long

training run will produce good results.

5 CRNN-GAN
For our other model, we primarily used recurrent layers and convo-

lutional layers to form the Generative Adversarial Network (GAN).

A primary motivation for the approaches taken with this model is

its ability to produce variable length signals without padding, with

the output length able to be determined by the user. This model is

largely inspired by a paper from Tampere University of Technology,

Cakir et al. 2017 [4], which outlines their construction of a convolu-

tional recurrent neural network used to classify bird vocalizations.

Their classifier takes log-magnitude spectrogram input which is

first passed through a series of convolutional and max pooling

layers, eventually shrinking the frequency dimension to one. The

output of this process is then passed through several recurrent lay-

ers which preserve dimensionality. A temporal max pooling layer

is then used to prepare the input for a final, fully connected layer

which gives the output classification. At the time of its release, their

model achieved an impressive second place standing in the Bird

Audio Detection challenge, scoring only half a percent behind the

first place winner by an area under the curve (AUC) metric.

Of course, Cakir et al. [4] describe the implementation of only

a classifier, designed to discriminate whether fixed-length audio

recordings contain bird vocalization. Our model, on the other hand,

is designed to solve the not related problem of producing artificial

bird vocalizations. Since classification is half the process of training

a GAN, we have in large part used their design for our discrimina-

tor. Further, and in traditional fashion, we used the building blocks

that their paper lays out to design our generator, which resembles

our discriminator with its steps in reverse. Our selection of their

classifier as a template is partly due to its success in the Bird Audio

Detection (BAD) challenge, but also due to its structural flexibil-

ity when it comes to signal length. Convolution, upsampling, and

pooling layers all have the inherent ability to perform on inputs

of various sizes, and recurrent layers work iteratively along some

axis. It is likely that the authors of the paper were aware of this

functionality, given their use of a max pooling layer, but no mention

of it is made in their paper, possibly because the BAD dataset uses

signals of only a single length. Other authors like Karim et al. [13]

also use CRNNs, and find them to be highly effective, suggesting

they are a good candidate for our model. We have extended these

ideas to a convolutional, recurrent generator, which we have not

found examples of in the literature, but may still exist.

5.1 Discriminator
This model’s discriminator takes the real and imaginary output of

the continuous wavelet transform as two channels. This input is

of size HxWxD. H is the height of the input, which is the number

of frequencies convoluted in the CWT. W is the width of the in-

put, or the number of samples in the signal. W does not have a

determined size. D is the depth of the signal, which starts as two,

the real and imaginary values, and grows over time through the

convolution layers much like traditional convolutional RGB image

discriminators. Alternating ReLU activation convolutional layers

and non-overlapping max pooling layers take this input, with the

pooling layers shrinking the H dimension, and the convolutional

layers increasing the D dimension. After the last convolutional

layer, the dimensionality is 1xWxD. This output is reshaped as

DxW, where each channel of depth is stacked over the width di-

mension as a two dimensional tensor. This tensor is then fed into

several GRU layers, keeping each iteration of predicted output and

preserving the shape DxW. The resulting DxW tensor is globally

max pooled over the variable size W dimension, resulting in a Dx1

shaped tensor which will be the same size regardless of the input

signal length, Therefore, a fully connected layer with a TanH ac-

tivation function can be used to compute the classification of the

signal as either real or generated.

5.2 Generator
The generator resembles the discriminator in reverse, but there

are complications. The input to this neural network is of shape

1xW, which is variable and will be the desired length of the out-

put signal. This noise is put through a gated recurrent unit layer,

which upscales the tensor to the shape DxW. From here several

more dimension preserving GRU layers are used, each of which

is bidirectional, and merges the two iterative directions through

addition. The DxW vector is then reshaped as HxDxW, where H is

1, and from here the process resembles more traditional convolu-

tional generator models. The HxDxW tensor passed to alternating

upsampling and convolutional layers. The upsampling steps are

all performed by all non-overlapping, k-nearest neighbor layers,

increasing the H dimension, while convolution decreases the depth

Jack Ruder, Lucas Gover, and Bennett Baynham

Figure 5: CRNN-GAN Discriminator

of the tensor. After the final convolutional layer, the tensor reshapes

to HxWxD, the shape of each datum of the dataset. Throughout

the internal processes of both the discriminator and the generator,

the size of the W dimension is not altered. The use of bidirectional

GRU layers in the generator comes out of a unidirectional RNN’s

inherent inability to know when iteration will end for variable

length input.

Figure 6: CRNN-GAN Generator

5.3 Data
5.3.1 Data. The dataset for this GAN consists of more than 38,000

audio signals stored as Numpy arrays at 44100 samples per second

from zebra finch cages. The data needed to be parsed from a much

larger dataset supplied to us by Dr. Melvin Rouse, which included

the large stretches of silence between the bird vocalizations. Our

method of parsing this data is through a relatively simple algorithm

which clips part of the longer recordings based on a minimum

volume threshold, and the amount of time between meeting the

said threshold and meeting it again. The parsed dataset contains

samples ranging from slightly less than half a second to over six

seconds. It is important to note that longer signals longer bird

vocalizations, which should result in a GAN where the user can

control the length of the bird vocalizations produced, not just the

signal, which should help reduce mode collapse.

5.3.2 Data Augmentation. The only data augmentation being per-

formed for this model is the temporal trimming of the audio in the

dataset-to-memory function. Each signal in the dataset is padded by

retaining .2 seconds of audio before and after the volume threshold

is met. The trimming operates on both ends of the signal, holding

back a random chunk of the padding from the signal sent to mem-

ory. It should be noted that this augmentation has more of an effect

on the RNN than the CNN portion of both the discriminator and

generator, due to the partial shift invariance of the CNNs used.

6 DISCUSSION
The primary takeaway is that producing a deep-faked scalogram is

a muchmore challenging task than producing a good looking image.

While state-of-the-art image generation means producing realistic

images of 1024x1024 = 1048576 pixels, a 1 second sample of audio at

22.5kHz has a representation of 64x22050 = 1411200 "pixels", a 34%

increase. Plus, the relationship between phase and instantaneous

angular frequency is more complex than the relationship between

colors. The sparsity of the scalogram inputs also requires more

training compared to typical images. A network created for this

specific task as a result needs to have similar capacity to state-of-

the-art image generation networks. Evaluating these techniques on

better hardware could prove to make all the difference.

Since significant training did not begin on the CRNN-GAN, some

of the methods used should not be presumed to work well. For

instance, the use of bidirectional GRU layers bring awareness of

the number of iterations left in a signal should work in theory, but

it may be too complicated a task to learn. In place of bidirecionality,

adding a normalized countdown as an input to each iteration of

the GRU layers may also work, or even be easier for the network

to learn. Also, parsing the zebra finch recordings supplied to us

will likely result in some parsed samples which do not contain bird

vocalization, which harms the training process. Manually checking

all of the recordings is not plausible, so the use of a pre-trained

bird audio classifier neural network to prune the dataset should be

considered.

There are some issues present in the transformer. At the moment,

generated scalograms look incorrect across frequencies, suggest-

ing that our network is not capturing the relationships between

frequencies very well. One solution would be to use the typical

patching scheme as demonstrated in Lee et al. 2021 [16] and Gong

et al. 2021 [7], opposed to feeding the Transformer a time-series.

However, we think that adjusting the sizes of MLP hidden layers

and increasing the network’s capacity should prove sufficient; any

issues learning likely are due to the huge image size or not training

long enough. Again, memory here is the primary restriction. Ideally,

we would also remove all convolutions from our network to both

simplify the architecture and reduce the number of floating-point-

operations needed, though removing convolutions increases the

needed memory in the transformer layers.

One solution for reducing the size of scalograms is to get rid

of the inverse CWT in reconstruction, instead relying on a neural

Birdsong-GAN

vocoder trained on birdsong. This has several benefits: we cheat

the Nyquist frequency by downsampling our scalograms before

feeding them to our GAN; we are not penalized by the sensitivity

of the inverse CWT; and a vocoder would be able to reconstruct

the loss in perceptual audio quality as shown in Engel et al. 2019

[6] and Shiba 2017 [21] .

Lastly, more experimentation is needed on the inclusion of phase

in the network. With how difficult our task is, including a second

channel for the generator to learn might make the task too challeng-

ing, even though it could lead to better results. Future work will

experiment with different input combinations of complex cartesian

input, magnitude and phase.

7 CONCLUSION
Singing birds are a powerful part of our natural ecosystem, yet

current methods for reproducing their singing are inept and lack

realism. In this paper, we have proposed a new paradigm for produc-

ing photorealistic bird calls using generative adversarial networks

(GANs). Our GAN model is trained on birdsong scalagrams which

leverage the Continuous Wavelet Transform for more precise time

and frequency measures. The system we have proposed offers a

vast improvement over previous bird call synthesis models, and

we believe it will eventually lead to high quality bird vocalization

generations.

ACKNOWLEDGMENTS
We would like to express our gratitude to Dr. Adam Smith, whose

guidance and support have enabled us to make enormous leaps in

our research this semester. His insightful suggestions and regular

check-ins were invaluable to our success, and we thank him for his

dedication and patience throughout the project. Our appreciation

is also extended to Dr. Melvin Rouse for the contribution of his

zebra finch data. We are grateful for the information and support

he provided in our research endeavor.

REFERENCES
[1] Ana Amador and Gabriel B. Mindlin. 2021. Synthetic Birdsongs as a Tool to

Induce, and Iisten to, Replay Activity in Sleeping Birds. Frontiers in Neuroscience,
15, (July 2021), 647978. doi: 10.3389/fnins.2021.647978.

[2] Robert C Beason. [n. d.] What Can Birds Hear? en.

[3] Rhythm Bhatia. 2021. An Initial study on Birdsong Re-synthesis Using Neural

Vocoders. arXiv:2209.10479 [cs, eess]. (Sept. 2021). Retrieved May 13, 2023 from

http://arxiv.org/abs/2209.10479.

[4] Emre Cakir, Sharath Adavanne, Giambattista Parascandolo, Konstantinos

Drossos, and Tuomas Virtanen. 2017. Convolutional recurrent neural networks

for bird audio detection. en. In 2017 25th European Signal Processing Conference
(EUSIPCO). IEEE, Kos, Greece, (Aug. 2017), 1744–1748. isbn: 978-0-9928626-7-1.
doi: 10.23919/EUSIPCO.2017.8081508.

[5] Ting Chen, Mario Lucic, Neil Houlsby, and Sylvain Gelly. 2019. On self modu-

lation for generative adversarial networks. (2019). arXiv: 1810.01365 [cs.LG].
[6] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Don-

ahue, and Adam Roberts. 2019. Gansynth: adversarial neural audio synthesis.

(2019). arXiv: 1902.08710 [cs.SD].
[7] Yuan Gong, Yu-An Chung, and James Glass. 2021. Ast: audio spectrogram

transformer. (2021). arXiv: 2104.01778 [cs.SD].
[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative

Adversarial Networks. arXiv:1406.2661 [cs, stat]. (June 2014). Retrieved May 12,

2023 from http://arxiv.org/abs/1406.2661.

[9] Gaurav Gupta, Meghana Kshirsagar, Ming Zhong, Shahrzad Gholami, and

Juan Lavista Ferres. 2021. Comparing recurrent convolutional neural networks

for large scale bird species classification. en. Scientific Reports, 11, 1, (Aug. 2021),
17085. Number: 1 Publisher: Nature Publishing Group. doi: 10.1038/s41598-02

1-96446-w.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep

into rectifiers: surpassing human-level performance on imagenet classification.

(2015). arXiv: 1502.01852 [cs.CV].
[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Computation, 9, 8, (Nov. 1997), 1735–1780. doi: 10.1162/neco.1997.9.8.17
35.

[12] Ilknur Icke. 2021. Central Pattern Generators to Synthesize Birdsongs. en. (Mar.

2021). Retrieved Apr. 26, 2023 from https://ickeilknur.medium.com/central-pat

tern-generators-to-synthesize-birdsongs-f0d09d6936c0.

[13] Fazle Karim, Somshubra Majumdar, and Houshang Darabi. 2019. Insights into

LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access,
7, 67718–67725. arXiv:1902.10756 [cs, stat]. doi: 10.1109/ACCESS.2019.2916828.

[14] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive

growing of gans for improved quality, stability, and variation. (2018). arXiv:

1710.10196 [cs.NE].
[15] Jeonghyun Kim, Yongkoo Park, and Wonzoo Chung. 2020. Transform based

feature construction utilizing magnitude and phase for convolutional neural

network in eeg signal classification. In 2020 8th International Winter Conference
on Brain-Computer Interface (BCI), 1–4. doi: 10.1109/BCI48061.2020.9061635.

[16] Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang, Zhuowen Tu, and Ce Liu.

2021. Vitgan: training gans with vision transformers. (2021). arXiv: 2107.04589

[cs.CV].
[17] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and

Stephen Paul Smolley. 2017. Least squares generative adversarial networks.

(2017). arXiv: 1611.04076 [cs.CV].
[18] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018.

Spectral normalization for generative adversarial networks. (2018). arXiv: 1802

.05957 [cs.LG].
[19] Olof Mogren. 2016. C-RNN-GAN: Continuous recurrent neural networks with

adversarial training. arXiv:1611.09904 [cs]. (Nov. 2016). doi: 10.48550/arXiv.16

11.09904.

[20] Eugene B. Postnikov, Elena A. Lebedeva, and Anastasia I. Lavrova. 2015. Compu-

tational implementation of the inverse continuous wavelet transform without

a requirement of the admissibility condition. arXiv:1507.04971 [math, q-bio].

(July 2015). Retrieved May 13, 2023 from http://arxiv.org/abs/1507.04971.

[21] Shintaro Shiba. 2017. Birdsong generation project. en-US. (2017). Retrieved

Apr. 21, 2023 from http://shibashintaro.com/birdsong-generation-project/.

[22] Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell,

and Gordon Wetzstein. 2020. Implicit neural representations with periodic

activation functions. (2020). arXiv: 2006.09661 [cs.CV].
[23] Adam A. Smith and Drew Kristensen. 2017. Deep learning to extract labora-

tory mouse ultrasonic vocalizations from scalograms. 2017 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), (Nov. 2017), 1972–1979.
Conference Name: 2017 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM) ISBN: 9781509030507 Place: Kansas City, MO Publisher:

IEEE. doi: 10.1109/BIBM.2017.8217964.

[24] Dan Stowell. 2022. Computational bioacoustics with deep learning: a review

and roadmap. PeerJ, 10, (Mar. 2022), e13152. doi: 10.7717/peerj.13152.

[25] Mya Thompson and Annalyse Moskeland. 2014. How and Why Birds Sing.

en-US. (Aug. 2014). Retrieved Apr. 26, 2023 from https://academy.allaboutbirds

.org/birdsong/.

[26] Christopher Torrence and Gilbert P. Compo. 1998. A practical guide to wavelet

analysis. Bulletin of the American Meteorological Society, 79, 61–78.
[27] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François

Boulogne, Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and

the scikit-image contributors. 2014. Scikit-image: image processing in Python.

PeerJ, 2, (June 2014), e453. doi: 10.7717/peerj.453.
[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you

need. (2017). arXiv: 1706.03762 [cs.CL].
[29] Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak Lee. 2020. Consis-

tency regularization for generative adversarial networks. (2020). arXiv: 1910.1

2027 [cs.LG].

https://doi.org/10.3389/fnins.2021.647978
http://arxiv.org/abs/2209.10479
https://doi.org/10.23919/EUSIPCO.2017.8081508
https://arxiv.org/abs/1810.01365
https://arxiv.org/abs/1902.08710
https://arxiv.org/abs/2104.01778
http://arxiv.org/abs/1406.2661
https://doi.org/10.1038/s41598-021-96446-w
https://doi.org/10.1038/s41598-021-96446-w
https://arxiv.org/abs/1502.01852
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://ickeilknur.medium.com/central-pattern-generators-to-synthesize-birdsongs-f0d09d6936c0
https://ickeilknur.medium.com/central-pattern-generators-to-synthesize-birdsongs-f0d09d6936c0
https://doi.org/10.1109/ACCESS.2019.2916828
https://arxiv.org/abs/1710.10196
https://doi.org/10.1109/BCI48061.2020.9061635
https://arxiv.org/abs/2107.04589
https://arxiv.org/abs/2107.04589
https://arxiv.org/abs/1611.04076
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1802.05957
https://doi.org/10.48550/arXiv.1611.09904
https://doi.org/10.48550/arXiv.1611.09904
http://arxiv.org/abs/1507.04971
http://shibashintaro.com/birdsong-generation-project/
https://arxiv.org/abs/2006.09661
https://doi.org/10.1109/BIBM.2017.8217964
https://doi.org/10.7717/peerj.13152
https://academy.allaboutbirds.org/birdsong/
https://academy.allaboutbirds.org/birdsong/
https://doi.org/10.7717/peerj.453
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1910.12027
https://arxiv.org/abs/1910.12027

Jack Ruder, Lucas Gover, and Bennett Baynham

A GENERATED SCALOGRAMS

Figure 7: Run stopped after 21 epochs, sample from epoch 15

Figure 8: Run stopped after 9 epochs, from training run in 4.
This (the last epoch) produces a pulsing noise, a very common
mode collapse for our network.

B AN IMPORTANT NOTE

Figure 9: Adam Smith with Birds

	Abstract
	1 Introduction
	2 Background
	2.1 CWT in Audio Analysis
	2.2 Convolutional-Recurrent-Neural-Networks
	2.3 GANs in Audio Generation

	3 Preprocessing
	3.1 Scalogram Generation
	3.2 Augmentation
	3.3 Polar Transformation
	3.4 Normalization

	4 Time-Transformer GAN
	4.1 Generator
	4.2 Discriminator
	4.3 Training
	4.4 Results

	5 CRNN-GAN
	5.1 Discriminator
	5.2 Generator
	5.3 Data

	6 Discussion
	7 Conclusion
	Acknowledgments
	A Generated Scalograms
	B An Important Note

